

First Steps with PLAIN

Version 2.0 (September 2014)

www.plain-nlp.de

© Peter Hellwig and Heinz-Detlev Koch

These instructions should help you to use PLAIN (Programs for Language Analysis and

Inference) right away. The principle is learning by doing. At first you can work with

the demonstration material included in the delivery. In doing so you organize your

own demo. Then you might augment existing files with your own entries, recreate the

database and look at the results. Later you may draw up and execute your own files

complying with the examples in the demo files.

You may also consult "The User's Guide to PLAIN" and "The Linguist's Guide to PLAIN"

while working with this paper.

 2

Contents

1 Installation .. 3

2 Open a project ... 4

3 Recreate Database ... 5

4 Inspecting the actual project .. 5

5 Morphology ... 7

5.1 Show Paradigms ... 8
5.2 Paradigm Content ... 9

5.3 Lookup ...10

5.4 Generate Word Forms from Root ..11

5.5 Further Lookup Tests..12

5.6 Lookup Options ...12

6 The Parser ..14
6.1 Parse Manual Input ..15

6.2 Parse a File ...18

6.3 Show Result ..18

6.4 Rest of the parser menu ...20

7 Tagger ...20
7.1 Lexical Lookup Only ...20

7.2 Parse the Input ...21

8 Categories ..21

8.1 Show Attributes ...22

8.2 Attribute Filtering...22

9 Lists ..23

9.1 Enter a List ...23

9.2 Read and Write Lists ..23

9.3 Find Lists in the Database ...24

10 Transducer ...25
10.1 Apply Rule to List ...26

10.2 Replace List ..29

11 Generator ..33

11.1 Generate Word Forms from Lexeme ...33

11.2 Generate Natural Language from DRL ...34

12 Converters - Cardlforms to Paradigms ..36

 3

1 Installation

The PLAIN system can be downloaded from http://www.plain-nlp.de. Save and

execute the file PlainSetup.exe. This will invoke the Plain Setup Wizard. Follow the

instructions.

After setup the following directories should be created on your computer.

Fig. 1 The plain directory and its subdirectories

The directory Plain includes the executable PlainIDE.exe. Execute this file in order to

run PLAIN. The directory dtd includes the data definitions for the PLAIN xml resource

files. The lingware directories contains linguistic material for the purpose of

demonstration and testing. The directory projects contains definition files and

databases of so-called projects. The kind of data in these directories and their use is

explained in the following sections. The directory Plain also includes unins000.exe for

removing PLAIN from your computer.

 4

If there is any problem installing and using PLAIN or if you like to give us feed-back,

please send an e-mail to hellwig@cl.uni-heidelberg.de.

2 Open a project

PLAIN always works on an actual project. A project is a particular constellation of

linguistic resource files, for example the description of a particular language. These

files are turned into an internal database for the program's execution. If a project is

opened then a message appears in the Log Messages box similar to the following:

20:19:17 Opening project 'latin_demo.prj'

If no project is opened yet or if you want to open another project then you must issue

the OpenProject command in the File menu:.

Fig. 2 Open Project in the File menu

Select a project file from the appearing window:

mailto:hellwig@cl.uni-heidelberg.de

 5

Fig. 3 Selecting the project file latin_demo.prj

Note: When PLAIN is started then the last project worked on is usually opened

automatically. However, when you execute PLAIN for the first time, the program may

start with no project open. What you must do in this case is issue the OpenProject

command. Then browse the directory C:Plain/projects which should look like the one

in Fig. 3. Select one of the .prj files

3 Recreate Database

The linguistic resource files are stored in a database. This database may be damaged

due to a former abnormal program end. So, here is a good advise for the future:

Whenever the program does not work as it should then try first the command

Recreate Database from the File menu.

4 Inspecting the actual project

Select Project Settings in the File menu. The following window appears:

 6

Fig. 4 The Project Settings of the project latin_demo

As you can see, the project comprises the following resource files:

- the project file .../projects/latin.demo.prj

- the category definition file .../lingware/latin_demo /load/latin_catf.xml

- the lexicon subsets .../lingware/latin_demo /load/latin_endings.xml

and .../lingware/latin_demo /load/latin_forms.xml

Why don't you have a look at the contents of these files in your text editor now. The

notation should be widely self explaining. For the exact format refer to "The Linguist's

Guide to PLAIN".

 7

Note:

The file .../load/latin_forms is derived automatically from the file

.../layers/latin_cardlforms.xml. The latter file contains so-called cardinal forms. They

are the preferred format of PLAIN for drawing up the morpho-syntactic lexicon.

<cardlform>silva silvae silvae</cardlform>
<cardlform>servus servi servi</cardlform>

<cardlform>templum templi templa</cardlform>

<cardlform>amare amo amavi amatum</cardlform>

<cardlform>delere deleo delevi deletum</cardlform>

<cardlform>facere facio feci factum</cardlform>
<cardlform>mordere mordeo momordi morsum</cardlform>

<cardlform>spondere spondeo spopondi sponsum</cardlform>

Fig. 5 Cardinal Forms (file latin_cardlforms.xml)

The conversion from .../lingware/latin_demo /layers/latin_cardlforms.xml into

.../lingware/latin_demo /load/latin_forms is demonstrated in chapter 12 below.

5 Morphology

Let us start with a demonstration of the morphological component. Press the

Morphology button of the main menu bar! Then try each command from the drop out

menu.

 8

5.1 Show Paradigms

Fig. 6 Command Show Paradigms in the Morphology menu

The command Show Paradigms displays the IDs of all paradigms stored in the

database. A Paradigm is a set of linguistic strings in a paradigmatic relationship, e.g.

the endings of a particular inflection class. Between several paradigms there may be a

syntagmatic relationship. For example, the stems of the Latin words constitute the

paradigm start. Have a look at the file .../lingware/latin_demo/load/latin_forms.xml

Here, each stem is linked up with an ending paradigm via a syntagmatic relationship

(formalized by the xml-element "contin"). You will find the ending paradigms in the

file .../lingware/latin_demo /load/latin_endings.xml.

 9

5.2 Paradigm Content

This command just shows the description of a paradigm as it is stored in the resource

file. You are prompted for the name of the paradigm to display.

Fig. 7 Content of the paradigm nma (Latin nouns, masculine, a-declension)

 10

5.3 Lookup

Now we are prepared to retrieve words from the lexicon. Select the command Lookup

from the Morphology menu and enter a word in the pop-up window, e.g. silvae:

Fig. 8 Looking up the word silvae in the Latin lexicon

The word silvae is homonymous according to the paradigm nma. That is why there

are two results. The output illustrates the DRL ("Dependency Representation

Language") notation. A DRL categorization consists of a set of attributes, each

attribute is followed by a set of values surrounded by square brackets. Please, excuse

the fact that we used the terminology of German school teachers in the Latin

fragment..

 11

Why don 't you look up other Latin words? Or run the test file! Select Input to be

looked up by File and choose the file .../lingware/latin_demo/test/latin_lookup.txt

5.4 Generate Word Forms from Root

Paradigmatic relationships (within a paradigm) and syntagmatic relationships

(between paradigms) in the PLAIN lexicon form a finite state transition network (FTN)

which can be used for generation as well as for lookup.

Fig. 9 Generating the Latin word forms with the stem silv

 12

You may try to generate word forms from other Latin stems in the paradigm start.

Use the command Paradigm Content in the Morphology menu for paradigm start to

find out which stems exist in the demo version.

You may also run a test file. Select File in the PLAIN Generate menu and choose the

file .../lingware/latin_demo/test/latin_gener.txt"

More sophisticated methods of word form generation are introduced in section 11.1.

5.5 Further Lookup Tests

Open the project german_demo.prj via the File menu. Have a look at the files listed in

Projects Settings under Lexicon Subsets:

- .../lingware/german_demo/load/de_demo_adjektive.xml

- .../lingware/german_demo/load/de_demo_substantive.xml

- .../lingware/german_demo/load/de_demo_verben.xml

- .../lingware/german_demo/load/de_lexbase.xml

- .../lingware/german_demo/load/de_neue_rechtschreibung.xml

Select the command Lookup from the Morphology menu with Input to be looked up

by File and run the files

- .../lingware/ german_demo /test/de_lookup_adjektive.txt

- .../lingware/ german_demo /test/de_lookup_substantive.txt

- .../lingware/ german_demo /test/de_lookup_verben.txt

Each word in these test files is an example for another inflectional behavior. And

virtually any morphological behavior of German adjectives, substantives and verbs is

represented by one example in this collection.

See chapter 12 for the derivation of the Lexicon Subset files from cardinal forms.

5.6 Lookup Options

Let us have a quick look at the options of the command Lookup.

 13

Fig. 10 Option Extract duplicates only

The option Extract duplicates only is a tool for avoiding duplicates in the lexicon.

Running Lookup on a corpus with this option helps to detect mistakes made while

drawing up the lexicon. The example in Fig. 10 is due to a mistaken double entry in

file .../lingware/german_demo/load /de_demo_verben.xml:

<form

paradigm="allgemein"><char>mach</char><drl>(lexem[machen])</drl>
<contin paradigm="inf-en"/></form>

<form

paradigm="allgemein"><char>mach</char><drl>(lexem[machen])</drl>

<contin paradigm="inf-en"/></form>

 14

Another tool is the option Extract unknowns only.

Fig. 11 Option Extract unknowns only

In this case the strings in the input that are NOT retrieved are displayed. Running

Lookup on a corpus of texts with this option yields vocabulary still missing in the

database. This is a prerequisite for bringing the lexicon up to date.

6 The Parser

The Parser menu pops up if you press the Parser button on the main bar.

 15

Fig. 12 The Parser menu

You can either have PLAIN parse manual input or parse a file.

6.1 Parse Manual Input

If you choose this command then an entry box shows up.

Fig. 13 The input window

If german_demo is your opened project then you may enter any input from the

following material. Sorry, if you do not speak German. An English demo is to come

soon.

Note: Each line must end with a space or a punctuation mark. This is a convention of

the actual German data rather than a principle of the PLAIN software. In the actual

 16

German grammar we consider a word delimiter (either a space or a punctuation

mark) as a mandatory part of a word. The lexicon is drawn up correspondingly.

Examples illustrating the morpho-syntax, including agreement, compounds,

portmanteau morphs:

verreisen wir

verreist du

verreisen sie

der freundliche Mann
ein freundlicher Mann

die Staubecken

die Staubecke

das Staubecken

am Sonntag

im Buch

mit Hilfe des Buches

Examples illustrating complements, including sentences, elliptic complement,

syntactic resolution of lexical ambiguity, optional or mandatory complements,

selectional restrictions, separable prefix, idiomatic expressions, processing of

punctuation marks, word order, word order variation:

Er verreist.

Verreist ihr?
Verreise!

Der Mann gibt dem Kind das Buch.

Dem Kind gibt der Mann das Buch.

Das Buch gibt der Mann dem Kind.

Es gibt keinen Stau. (turn off "first match only" for this example)

Sie gibt an.
Der Mann gibt der Frau das Buch ab.

Der Mann gibt sich freundlich.

Das Buch gibt dem Mann zu denken.

Der Frau gibt zu denken, dass er verreist.

Dass er verreist, steht außer Frage.

Examples illustrating nucleus and raising:

Der Mann hat dem Kind das Buch abgegeben.

Der Mann ist verreist.

Dass die Frau verreist ist, hat dem Mann zu denken gegeben.

Der Mann ist freundlich.

Die Frau ist dem Mann überlegen.
Dass der Mann verreist, ist der Frau unheimlich.

Examples illustrating adjuncts, including selectional features for identifying roles,

expected adjuncts, relative clauses:

Der Mann gibt dem Kind das Buch in der Kirche.

Er geht in die Kirche.

Es steht im Buch.

 17

Er steht an der Kirche.

Er verreist am Sonntag.
Die Frau befindet sich in der Kirche.

Die Frau befindet sich. (parsing this example must fail because the expected

adjunct is missing)

Er hat dem Mann, welcher verreist, das Buch gegeben.

Das Buch, welches der Mann der Frau gibt, ist spannend.

Examples illustrating discontinuous constituents, including extraposition of

complements and adjuncts, coordination of discontinuous constituents:

Das Buch hat er dem Mann gegeben.

Dem Mann hat er Geld gegeben.

Am Sonntag hat er dem Mann das Geld gegeben.

Dem Mann das Geld hat er genommen.

Er hat dem Mann das Buch gegeben, welcher verreist.

Entweder der Frau das Buch oder dem Kind das Geld hat er gegeben.

Das Geld hat er genommen und das Buch hat er gegeben.

Examples illustrating coordination including identical roles in the conjuncts,

coordination of complements and adjuncts, coordination and nucleus, sentence

coordination:

Der Mann gibt dem Kind das Buch und der Frau das Geld.

Er hat dem Kind das Buch und das Geld gegeben.

Der Mann und das Kind verreisen.
Er hat entweder der Frau oder dem Kind das Geld gegeben.

Er hat der Frau entweder das Buch oder das Geld gegeben.

Er hat entweder der Frau das Buch oder dem Kind das Geld gegeben.

Der Mann gibt dem Kind das Buch am Montag und das Geld am Dienstag.

Er gibt entweder der Frau das Buch am Sonntag oder dem Kind das Geld am

Montag.
Hat er der Frau ein Buch gegeben und dem Mann das Geld genommen?

Examples illustrating ellipsis, including various elliptic complements in coordinated

constructions:

Er gibt das Geld und nimmt das Buch.

Er gibt und nimmt Geld.

Gibt und nimmt er Geld?

Er gibt und sie nimmt das Geld.
Er gibt und nimmt dem Mann das Geld.

Er gibt dem Mann das Buch und verreist.

Entweder der Mann gibt oder das Kind nimmt das Geld.

Examples illustrating so-called "ophans", i.e. dependents of elliptic heads:

Der glückliche Mann nimmt das Geld und der freundliche gibt dem Kind das

Buch.

Der glückliche gibt dem Kind das Geld und der freundliche das Buch.

 18

The resources of the parser are so-called templates and so-called synframes.

Templates describe the construction of a syntactic unit by joining a head constituent

and a dependent constituent. Templates incorporate so to say the rules of generative

grammar. Synframes associate templates with lexical items. Synframes incorporate so

to say the strict subcategorizations of generative grammar. In terms of dependency

grammar they define the valency of words.

The above examples are parsed due to the contents of the files

.../lingware/german_demo/load/de_templates.xml and

.../lingware/german_demo/load /de_synframes.xml. Perhaps you want to have a look

into these files with your editor. Instructions to draw up such resources can be found

in "The Linguist's Guide to PLAIN". The files with Templates and Synframes must be

specified in the appropriate entry boxes of New Project or Project Settings.

6.2 Parse a File

The above examples are also included in the file

.../lingware/german_demo/test/de_parser.txt Choose the command Parse a File and

specify this file as input. In this way you save the labor of typing in examples.

6.3 Show Result

There are three formats of parser output: Show Short Result, Show Long Result,

Show Full Result. If you enter "Er verreist." (He goes on a journey) as in Fig. 13

then a "short" result is displayed:

(illokution: aussage'
 (proposition: verreisen

 (subjekt: anaphor_sgm')));

This format presents an overview of the analysis showing just the dependency

structure and the syntagmatic roles and lexical meanings. (This is not proper DRL!)

If you enter the command Show Long Result you should get:

 19

(rolle[illokution] lexem[aussage'] kategorie[satz] aeusserung[+] wortlaut[.]

schreibung[klein]
 (L rolle[proposition] lexem[verreisen] kategorie[verb] form[finit]

 modus[indikativ] numerus[singular] person[dritte]

 stellungstyp[verb_zweit] tempus[praesens] wortlaut[verreist]

 schreibung[klein] randstellung[+]

 (L rolle[subjekt] lexem[anaphor_sgm'] kategorie[nomen]

 determination[+] genus[maskulin] kasus[nominativ]

 numerus[singular,C] person[dritte,C]
 pronomen[personal] wortlaut[Er] schreibung[gross]

 s_position[1])));

This is DRL format, the formalism of Dependency Unification Grammar (DUG). Each

term ("node") in the dependency tree consists of a set of attributes and value. The

parser works by "unifying" all these features of all items. Some attributes represent

content, some grammatical features, some word order information. If you are

interested in a subset of attributes only, you may apply Attribute Filtering (see section

8.2).

If you enter the command Show Full Result the result is displayed in the following

format:

 12 '.'

 (rolle[illokution] lexem[aussage'] kategorie[satz] aeusserung[+] wortlaut[.]

schreibung[klein]
 4 'verreist'

 (L rolle[proposition] lexem[verreisen] kategorie[verb] form[finit]

 modus[indikativ] numerus[singular] person[dritte] stellungstyp[verb_zweit]

tempus[praesens] wortlaut[verreist] schreibung[klein] randstellung[+]

 1 'Er '

 (L rolle[subjekt] lexem[anaphor_sgm'] kategorie[nomen] determination[+]

genus[maskulin] kasus[nominativ] numerus[singular,C] person[dritte,C]

pronomen[personal] wortlaut[Er] schreibung[gross] s_position[1])));

Try out the different output formats after parsing other example sentences.

If you Parse a File you can choose the type of display by means of the check boxes of

the following pop-up window. You can activate more than one check box in order to

get more than one output.

 20

Fig. 14 Display results in the Short, Long, and Full format

6.4 Rest of the parser menu

After Parsing Manual Input any of the other commands on the menu (except Parse a

File) can be executed. You might just try out the list and see what happens, although

some functions require more knowledge about PLAIN than can be provided here.

Please consult "The Linguist's Guide to PLAIN" and the "Technical Guide to PLAIN".

7 Tagger

PLAIN is devoted to full-fledged syntactic analysis and semantic processing. Tagging

input strings is just a by-product. Nevertheless some users might want to use PLAIN

as a tagger, especially if a particular PLAIN project has sizeable resources at its

disposal.

There are two options.

7.1 Lexical Lookup Only

In the case of this option tagging is done just on the basis of the morphological

lexicon. The device is the same as the Lookup command in the Morphology menu. The

difference is that the Tagger function creates an output file in xml-format while the

Lookup function creates a perspicuous display on the screen.

 21

Issue the command Lexical Lookup Only. You will be prompted for an input and an

output file. For the time being, you may specify the file

.../lingware/german_demo/test/de_tagger.txt as input. It contains more or less the

example sentences of the parser. You have to specify an output file too. Eventually

this file will contain an xml-representation of the input strings (within <char> and

</char> tags and their classification (within <drl> and </drl> tags.

Activate the check box First match only and repeat the test. Now the output file

contains only the first <char> <drl> of alternative classifications.

For comparison issue the Lookup command in the Morphology menu and specify the

same file as input.

Try out subsets of tags by means of the command Attribute filtering in the menu

Categories (cf. section 8.2). You can reduce ambiguity and hence alternative

classifications by moving attributes from the visible to the hidden part.

7.2 Parse the Input

If you choose this option the input is parsed before tags are assigned to words.

Ambiguity is removed and higher level attributes like syntagmatic roles can be

retrieved. If no complete analysis of a sentence is achieved than partial parsing is

applied.

Issue the command Parse the Input. You will be prompted for an input and an output

file. For the time being you may specify the file

.../lingware/german_demo/test/de_tagger.txt as input. Have a look at the output and

compare it with the output of the Lexical Lookup Only function.

8 Categories

The previous examples should have given an impression of what categories are like in

the Dependency Representation Language (DRL). A category is any desired set of

attributes and values. Since attributes may be processed differently, they must be

defined for each project in the Category Definition file. Each attribute must be

 22

associated with a type. The details are explained in "The Linguist's Guide to PLAIN".

Here, we just have a look at two tools related to categories. Press Categories on the

main menu bar!

8.1 Show Attributes

Choose the Show Attributes command. The set of attributes defined for the current

project is shown, preceded by a code for the attribute type. This command makes

sense if you want to check the database for the correct representation of categories.

8.2 Attribute Filtering

PLAIN uses complex categories. But the user can vary the DRL representation to a

great extent by using the Attribute Filtering command. One can choose attributes and

move them in the appearing window from Visible to Hidden and vice versa. If

german_demo is the current project then move attributes until you have about the

following situation. Then click on.

Fig. 15 Attribute Filtering

You can test Attribute Filtering now with the command Show Long Result in the

Parser menu. Parse a sentence, e.g. "Er verreist."

If you activate Attribute Filtering with the above setting then the parser yields the

following result:

 23

(rolle[illokution] lexem[aussage']
 (rolle[proposition] lexem[verreisen] numerus[singular]

 (rolle[subjekt] lexem[anaphor_sgm'] numerus[singular,C])));

Compare this output with the display of all attributes in section 6.3 Move other

attributes from Visible to Hidden and vice versa and try the Show Long Result

command of the Parser again.

Try out Attribute Filtering with other output, for example with the Lookup function of

the Morphology menu or with the Tagger output.

If all attributes should be visible again then press the Off button in Fig. 15. .

9 Lists

The List menu offers a few tools to test lists, to change the list format while reading

and writing lists, and to find particular lists in the database.

9.1 Enter a List

Type or copy and paste any DRL expression in the input box.

9.2 Read and Write Lists

Once more Parse a File in the Parser menu, but activate the check box Copy DRL to a

file. You will be prompted for the creation of an output file. Specify this file in the File

box of the Get List pop-up window of the Read and Write Lists command.. Activate

the check boxes at will and then press OK.

 24

Fig. 16 Reviewing and displaying DRL data

9.3 Find Lists in the Database

DRL lists are stored in the database in a special way to facilitate retrieval. On the one

hand one can divide the data into so-called partitions. For example the templates

used by the parser or the theorems used by the transducer are arranged in different

partitions. On the other hand each list may be indexed by particular attributes it

contains in a certain position.

Choose the Find Lists in the Database command and complete the pop-up window as

shown. You will get all subject templates of the german_demo project.

 25

Fig. 17 Find all "+subjekt" templates in the database

Have a look at the file .../lingware/partitions/partions.xml in your editor. In this file

the methods of indexing are defined for each partition.

10 Transducer

Dependency Unification Grammar (DUG) claims that linguistic actions like

paraphrasing, translating, inferring, summarizing should be modeled by operations on

DRL expressions according to rules. The original DRL expressions are derived from

natural language expressions by the Parser. New DRL expressions result from

operations of the Transducer. These DRL expressions must eventually be turned into

natural language strings again by the Generator.

The rules to be used by the Transducer must be drawn up and stored in files which

must be specified in the entry box Instances and Rules of the New Project or Project

Settings command. For convenience we added the following transducer files to the

project german_demo:

 26

- .../lingware/transducer/load/de_passive_rule.xml

- .../lingware/transducer/load/de_en_ translation_rules.xml

- .../lingware/transducer/load/theorems.xml

10.1 Apply Rule to List

The function Apply Rule to List is designed to draw up and test single rules step by

step. Let us use this function for paraphrasing a German sentence in the active voice

by a sentence in the passive voice.

First we must parse a sentence with a direct object in order to get its DRL expression.

Execute Parse Manual Input on the Parser menu. Enter for example "Der Mann gibt

dem Kind ein Buch." (The man gives a book to the child.) Execute Attribute Filtering

of the Category menu. The following attributes should be visible: "lesart", "lexem",

"lexem_zusatz", "numerus", "rolle". Enter Show Long result. The following parser

result should show up:

 (rolle[illokution] lexem[aussage']
 (rolle[proposition] lexem[geben] lesart[transferieren]

 numerus[singular]

 (rolle[subjekt] lexem[mann] numerus[singular,C]

 (rolle[determination] lexem[definit'] numerus[singular,C]))

 (rolle[dativ_objekt] lexem[kind] numerus[singular]
 (rolle[determination] lexem[definit'] numerus[singular,C]))

 (rolle[trans_objekt] lexem[buch] numerus[singular]

 (rolle[determination] lexem[ein] numerus[singular,C]))));

Now choose Apply Rule to List in the Transducer menu.

 27

Fig. 18 The Apply Rule to List pop-up window.

Activate the radio buttons Get the instance from the parser and Get the rule from the

database. Press OK.

The option Get the rule from the database invokes the Find Rule function. Please enter

"replace" in the partition box, "lexem" in the Attribute box, "aussage'" in the Value

box (please note the hyphen!) and activate the radio button Depend. Press OK.

 28

Fig. 19 Find the rule for passive voice in the database

The replacement rule for active versus passive voice paraphrasing is displayed on the

screen. Press OK in the small pop-up window. The result is the DRL expression

corresponding to the sentence "Ein Buch wird von dem Mann dem Kind gegeben." (A

book is given by the man to the child.)

List after replacement:

 (rolle[illokution] lexem[aussage']

 (rolle[proposition] lexem[werden] lesart[passiv] numerus[singular]

 (rolle[subjekt] lexem[buch] numerus[singular]
 (rolle[determination] lexem[ein] numerus[singular,C]))

 (rolle[praedikativ] kategorie[verb] lexem[geben]

 lesart[transferieren]

 (rolle[agens] lexem[von] kategorie[praeposition]

 (rolle[komplement] lexem[mann] numerus[singular,C]

 (rolle[determination] lexem[definit']

 numerus[singular,C])))
 (rolle[dativ_objekt] lexem[kind] numerus[singular]

 (rolle[determination] lexem[definit']

 numerus[singular,C])))));

- You have to consult "The Linguist's Guide to PLAIN" for information about the

mechanism of replacement rules in PLAIN.

-

- If you want to study the various possibilities of replacement then you may chose the

option Get both the instances and the rules from a single file and specify the file

.../lingware/transducer/ test/trasducer_test.txt as input.

 29

Fig. 20 The Apply Rule function applied to a test battery of instances and rules

10.2 Replace List

This function applies all available rules repeatedly to an instance and its

replacements. Our first example is a translation from German into English and vice

versa:

German:

Ich erinnere mich an meine Freundin.

Du erinnerst mich an meine Freundin.

English:

I remember my girl friend.

You remind me of my girl friend.

 30

As can be seen, small differences in the source language can lead to lexically and

structurally quite divergent translations.

The DRL expressions of the above German sentences are stored in the file

.../lingware/transducer /test/de_en_translation_input.txt: Specify this file in the pop-

up window, then enter "translate" in the Partition box and press OK.

Fig. 21 Translate German into English

The following output should appear:

 31

List to be replaced:

 (rolle[praedikat] lexem[erinnern]

 (rolle[subjekt] lexem[ich])

 (rolle[reflexiv])

 (rolle[praep_obj] lexem[an]
 (lexem[freundin]

 (rolle[dete] lexem[mein]))));

List after replacement:

 (lexem[remember] rolle[praedikat]
 (rolle[trans] lexem[girl_friend]

 (lexem[my] rolle[dete]))

 (lexem[I] rolle[subjekt]));

List to be replaced:

 (rolle[praedikat] lexem[erinnern]
 (rolle[subjekt] lexem[du])

 (rolle[trans] lexem[mich])

 (rolle[praep_obj] lexem[an]

 (lexem[freundin]

 (rolle[dete] lexem[mein]))));

List after replacement:

 (lexem[remind] rolle[praedikat]

 (rolle[trans] lexem[me])

 (rolle[praep_obj] lexem[of]

 (lexem[girl_friend]
 (lexem[my] rolle[dete])))

 (lexem[you] rolle[subjekt]));

Have a look at the rules in file

.../lingware/transducer/load/de_en_translation_rules.xml. The same set of rules

allows the translation from English to German as well. Specify the file .../lingware

/transducer/test/de_en_reverse_translation_input.txt in the File box, enter partition

translate, and activate the Reverse Order option. You may also try out Show

intermediate results.

The second example illustrates the use of PLAIN as a theorem prover by means of

replacement rules. Have a look at the contents of file .../lingware/

transducer/load/theorems.xm in your editor. Here theorems of propositional logic are

formulated as replacement rules. Applying these rules to a proposition results in the

terms "l-wahr" (logically true) if the proposition is a tautology, or "l-falsch" (logically

 32

false) if the proposition is a contradiction. Otherwise the application results in a

disjunctive normal form of the original proposition.

Invoke the Replace List command.

Enter the file .../lingware/transducer/load/theorem_input.xml in the File box and

choose "theorems" in the Partition box. Then press OK. The following output should

appear:

List to be replaced:

 (lexem[wenn_dann]

 (rolle[j1] lexem[und]

 (rolle[j] lexem[wenn_dann]

 (rolle[j1] lexem[a])

 (rolle[j2] lexem[b]))

 (rolle[j] lexem[a]))
 (rolle[j2] lexem[b]));

List after replacement:

 (l_wahr);

List to be replaced:

 (lexem[wenn_dann]

 (rolle[j1] lexem[und]

 (rolle[j] lexem[wenn_dann]

 (rolle[j1] lexem[a])
 (rolle[j2] lexem[b]))

 (rolle[j] nicht lexem[a]))

 (rolle[j2] nicht lexem[b]));

List after replacement:

 (lexem[oder_d]
 (rolle[j] lexem[a])

 (rolle[j] nicht lexem[b]));

The first list is a DRL formulation of the modus ponens. Since this is a theorem the

replacements end with "l_wahr". The second list is a contingent statement. The

replacements result in the disjunctive normal form. If you want to study the

procedure then activate the check box Show intermediate results before you press

OK.

 33

11 Generator

While the morphology lookup function receives a word form and yields the attributes

appertaining to the substrings of the word, and while the parser reads a sentence and

yields the dependency structure of the sentence associated with the unified attributes

of each substring, the generator receives a DRL categorization and yields natural

language strings.

11.1 Generate Word Forms from Lexeme

Select the Generator menu and activate the Generate Word Forms from Lexeme

Command. The following window appears. Enter 'geben' in the Lexeme box.

Fig. 22 The Generate Word Forms from Lexeme window

64 word forms of the verb geben and its adjectival and nominal derivations should be

displayed together with the respective attributes. They illustrate Ablaut ('geben',

'gab') as well as Umlaut ('gebe', 'gibst', 'gäbe'). Enter Lexeme 'geben' again but Select

part of speech 'adjektiv'. Enter Lexeme 'geben' Select part of speech 'nomen'. The

output is restricted to particular derivations.

Try out other words, e.g. 'sein', 'gehen', 'Buch', 'groß', 'ein'. Activate the File radio

button and enter

.../lingware/ german_demo /test/de_genelex.txt.

This file contains all the lexemes of the German demo version.

 34

If one has a complete list of lexemes of an implementation then one can derive a word

forms lexicon with this function, i.e. the set of all possible word forms together with

their categorization.

Finally activate the check box Show traversed paradigms and enter 'geben' in the

Lexeme box. Now the word forms are intertwined with the names of the traversed

paradigms in angled brackets. For example the following output is created among

other:

'geb<inf-en>end<adj-aktiv><adj><adj-endung>e<leerzeichen>'

 (flexion[stark-schwach,stark] kasus[nominativ,akkusativ]

 numerus[singular] genus[feminin] verwendung[attributiv]

 kategorie[adjektiv] derivation[aktiv_eigenschaft] lexem[geben]

 steigerung[keine]);

This is to be read as follows: “There is a word form 'geb-end-e' starting with the stem

'geb' in the paradigm <inf-en> of verbs that form the infinite with 'en'. The following

substring 'end' leads to a paradigm <adj-aktiv> of the derivation of the property of

the active doer (as opposed to the passive 'gegebene'). Next the generator enters the

paradigm <adj-endung> of adjective endings, finding the ending 'e'. The latter gives

rise to the attributes nominative or accusative case, singular, feminin. The string ends

in the paradigm <leerzeichen> of the empty space as word delimiter. You have to

study the resource files in the .../lingware/ german_demo /load directory in order to

understand the whole network of paradigms.

11.2 Generate Natural Language from DRL

If a DRL expression is entered the corresponding natural language string is created.

The DRL expression may be underspecified, i.e. only a subset of all applicable

attributes occur in the expression. The minimum of attributes in each term

(corresponding with a word) is a syntagmatic role and a lexeme. The generator is

then trying to retrieve the missing attributes. Since the underspecified expression may

be ambiguous, more than one result may be the outcome.

Select the Generator menu and activate the Generate Natural Language from DRL

Command. The following window appears. Activate the File radio button and enter

 .../lingware/ german_demo /test/de_generate.txt in the File box.

 35

Fig. 23 The Generate Natural Language from DRL window

Please compare the DRL source and the generated strings which are displayed. What

is remarkable is the effect of comprehensive attributes versus underspecification. For

example:

DRL source:

(rolle[determination] lexem[definit'] numerus[plural] kasus[dativ]);

Results:

den

DRL source:

(rolle[determination] lexem[definit'] numerus[plural]);

Results:

der

den

die

If the definite article is specified with plural dative, we get the single result 'den'. If

case is omitted then we get all the plural forms of the definite article 'der', 'den', 'die'.

Please study the other examples.

 36

Generation is a good tool for testing whether the grammar is correct and does not

overgenerate. This is a prerequisite for an efficient parser. Check our little fragment

by entering the output of the parser into the generator. To do this specify

.../lingware/ german_demo /test_results/de_parser_output_drl.txt

 in the File box and execute the generator.

12 Converters - Cardlforms to Paradigms

For the time being we want to demonstrate just one converter: Cardlforms to

Paradigms. Cardinal forms (cardlforms) are the common way to enter vocabulary into

the system by showing its morphological behavior. Paradigms are the data structures

that are eventually stored in the database.

Two supporting data sets are necessary: cardinal patterns (cardlpatterns) and

morphological classes (morphclasses). The converter detects the morphological class

of each cardinal form by comparison with the cardinal patterns. It then creates the

paradigm entries according to the description of the morphological class in question.

Adjectives, nouns and verbs are kept apart in the geman_demo project. That is why

we have three sets of cardlforms, cardlpatterns and morphclasses in the directory

...geman_demo/layers.

Adjectives:

.../lingware/german_demo/layers/de_demo_cardlforms_a.xml

.../lingware/german_demo/layers /de_cardlpatterns_a.xml

.../lingware/german_demo/layers /de_morphclasses_a.xml

Nouns:

.../lingware/german_demo/layers/de_demo_cardlforms_n.xml

.../lingware/german_demo/layers /de_cardlpatterns_n.xml

.../lingware/german_demo/layers /de_morphclasses_n.xml

Verbs:

.../lingware/german_demo/layers/de_demo_cardlforms_v.xml

.../lingware/german_demo/layers /de_cardlpatterns_v.xml

.../lingware/german_demo/layers /de_morphclasses_v.xml

If you want to convert cardinal forms for adjectives into loadable adjective paradigms

then you have to execute command Cardlforms to Paradigms in the Converters

 37

menu and complete the pop-up window in the following manner. Direct the output

into a file in the directory test_results.

Fig. 22 Converter from cardinal forms into loadable Paradigms

Do the same with nouns and verbs and then compare the new files of the directory

test_results with the original files in the directory load.

