
 1

The PLAIN User's Guide

Version 2.0 (September 2014)

www.plain-nlp.de

© Peter Hellwig and Heinz-Detlev Koch

Abstract:

PLAIN (Programs for Language Analysis and Inference) is an integrated

development environment (IDE) which provides comprehensive facilities to

(computational) linguists for creating and processing lingware. PLAIN adheres

to Dependency Unification Grammar (DUG), a particular formal approach to

describe natural languages. DUG aims at a simple and at the same time broad

coverage of linguistic phenomena. Dependency Representation Language (DRL)

is the formalism of DUG. The PLAIN IDE provides an interpreter of resources

written in DRL for various purposes. The main functions are the Parser, the

Transducer, and the Generator. The parser reads natural language input,

consults the grammatical resources (lexicon, "synframes" and "templates")

written in DRL and yields a syntactic description in DRL format. The transducer

reads a DRL construct, consults rules written in DRL and outputs new DRL

constructs. The generator turns DRL constructs in natural language surface.

This paper explains how to use the software.

 2

Contents

1 Background .. 3
2 Starting the PLAIN IDE .. 4
3 The File menu ... 5
3.1 Project administration .. 6
3.2 New Project .. 6
3.3 Open Project .. 9
3.4 Project Settings .. 9
3.5 Augment Project .. 9
3.6 Recreate Database .. 10
3.7 Activate Logfile ... 11
4 The Categories menu ... 11
4.1 Show Attributes .. 11
4.2 Attribute Filtering ... 12
5 The Lists menu ... 13
5.1 Enter a List ... 13
5.2 Read and Write Lists .. 14
5.3 Find Lists in the Database .. 15
6 The Morphology menu ... 17
6.1 Show Paradigms ... 17
6.2 Paradigm Content .. 17
6.3 Lookup ... 18
6.4 Generate Word Forms from Root .. 19
6.5 Morphology layers and converters .. 20
7 The Parser menu.. 20
7.1 Parse Manual Input ... 21
7.2 Parse a file .. 21
7.3 Tools ... 23
7.4 Show Short Result ... 23
7.5 Show Long Result .. 24
7.6 Show Full Result ... 24
7.7 Show Rooted Chart Elements ... 24
7.8 Show All Chart Elements .. 24
7.9 Show Sorted Chart Elements .. 25
7.10 Show Bulletin... 25
7.11 Show all Bulletins of a Result.. 25
7.12 Compare Bulletins ... 25
7.13 Show Diagnosis .. 25
8 The Tagger menu .. 26
8.1 Lexical Lookup Only .. 27
8.2 Parse the Input ... 27
9 The Transducer menu .. 28
9.1 Apply Rule to List ... 29
9.2 Replace List .. 31
10 Generator .. 33
10.1 Generate Word Forms from Lexeme .. 33
10.2 Generate Natural Language from DRL .. 34
11 Converters .. 36
11.1 SGML to XML ... 36
11.2 CardlForms to MorphUnits ... 36
11.3 MorphUnits to Paradigms ... 37
11.4 CardlForms to Paradigms ... 38
11.5 Test Examples to Parser Input ... 39

 3

1 Background

The purpose of the computer system PLAIN ("Programs for Language Analysis

and Inference") is drawing up and processing models of natural languages. The

program interprets resources written in Dependency Representation Language

(DRL) and performs the corresponding linguistic actions, among which are

morphological and syntactic analysis and semantic processing.

DRL is the formalism of Dependency Unification Grammar (DUG). DUG is a

particular formal approach to natural languages. For details please consult Peter

Hellwig "Dependency Unification Grammar" In Dependency and Valency. An

International Handbook of Contemporary Research. Edited by V. Agel, L.M.

Eichinger, H.-W. Eroms, P. Hellwig, H.-J. Heringer, H. Lobin. Berlin, Mouton

2003, pp 593-635.

On the one hand, DRL is designed to cover a broad range of linguistic

phenomena, including complements and adjuncts, nucleus and raising,

compounds, discontinuous constituents, coordination, ellipsis. On the other hand,

DRL is perspicuous and simple so that grammarians and lexicographers can

easily draw up large data resources. The acronym "plain" has been chosen in

order to allude to this simplicity. Please consult "The Linguist's Guide to PLAIN"

for details about the linguistic resources necessary to run PLAIN.

In connection with PLAIN as an interpreter, DRL is kind of a high level

programming language which is used by the linguist in order to make the

computer analyze natural language input. This may happen in a teaching

environment or in order to test the quality of linguistic descriptions as well as in

real NLP applications.

The PLAIN IDE is an Integrated Development Environment first of all for the

linguist. It provides many tools for drawing up, testing and debugging the

linguist's descriptions. The main linguistic modules of the system are:

 4

- the morphological analyzer,

- the parser,

- the transducer,

- the generator of surface text.

In addition, the system provides the following infrastructure:

- the user interface,

- the database.

The morphological analyzer (also called the scanner) segmentizes input text and

classifies the segments according to the linguist's lexical description. The parser

detects the syntagmatic relationships between the segments and classifies them

according to the linguist's grammatical description. The transducer derives one

formal representation from another. Depending on the type of these

transformations (e.g. paraphrasing, inferring, translating, summarizing), this is

a way to model the lexical-semantic, the logical-semantic and the text-linguistic

system of the language. The generator turns the resulting formal representations

into natural language text. Data is passed from one module to the other via input

and output queues. The Plain IDE provides a graphical user interface

implemented in tcl. All linguistic resources are stored in a single database

optimized for retrieval.

2 Starting the PLAIN IDE

In the sequel the functionality of the PLAIN IDE is sketched. Starting the

PlainIDE.exe results in Fig. 1.

 5

Fig. 1 Initial Window

The Main Window contains the menu bar and two boxes. The Log Messages box

displays certain messages during execution including error messages. The Result

Messages box displays the results of the operation requested via the menu lists.

The contents of the Result Messages box can be stored by clicking the icon.

The box can be cleared by clicking the icon.

3 The File menu

Clicking on the File button results in Fig. 2.

Fig. 2 The File drop-out menu

 6

3.1 Project administration

The first few items on the list in Fig. 2 serve the purpose of project

administration. A project is a particular constellation of linguistic resource files.

These files are turned into an internal database for the program's execution.

Each database consists of two automatically created files carrying the name of

the project and the extensions .dat and .idx. A third file with the name of the

project and the extension .prj saves the definition of the resource files that

provide the input to this particular database.

If projects exist then the PLAIN IDE will automatically open the last project

worked on. The latter information is stored in a file with the extension .plainide.

If no project exists or if a database with a new constellation of resources should

be built then a new project must be defined.

3.2 New Project

The New Project command results in a pop-up menu as displayed in Fig. 3. The

files that are to form the project must be entered in the appropriate boxes.

First, a file carrying the name of the project with the extension .prj must be

entered in the box Save Project as. This file is updated automatically and is

going to collect all parameters of the project.

Next, the Database Directory must be specified in which the .dat and .idx files

forming the database should be stored.

All other entries indicate resource files which have been drawn up previously by

the linguist using her/his external editor. See details about the format of these

files in "The Linguist's Guide to PLAIN".

A first group of files forms the PLAIN Lexicon. A file containing the Category

Definition of the symbols to be used in the DRL must always be specified. Various

files which form Lexicon Subsets may be added. They cover the morphology of

 7

the language in question. If the database contains DRL lists that should be

retrieved by means of Partitioning and Indexing then a Definition File must be

existing that contains the database partitions and list indexes. The resources of

the Parser and the Transducer require this scheme.

The next group of files supplies the resources for the PLAIN Parser and for the

Generator. In addition to a PLAIN Lexicon we need a file with Synframes, i.e. a

set of syntactic frames for the lexemes of the language. These frames define the

combination capability of words in terms of complements and adjuncts.

Furthermore we need a file with Templates, i.e. a detailed description of any

complement and adjunct mentioned in the Synframes.

The last group comprises files for the PLAIN Transducer. These files must be

entered in the box Instances and Rules. They describe operations like

paraphrasing, translation, logical deduction.

 8

Fig. 3 Window for defining a new project

Press the Save button after all resources for the new project have been

specified. As a result, the specification is stored in the indicated .prj file and a

new .dat and a new .idx file are created in the indicated Database Directory. The

text files forming the resources of the new project are all turned into an internal

format and stored in these two data sets.

 9

3.3 Open Project

If a new project is saved then the database of this project is opened. If you start

PLAIN then the last project worked on is automatically opened. If you want to

work with another database you have to issue the Open Project command in the

File drop-out menu. A browser appears from which you can choose an existing

project file.

Fig. 4 Choosing an existing project

3.4 Project Settings

A project must be opened before you can issue the Project Settings command.

The pop-up menu you get when clicking Project Setting is similar to the one for

New Project. The resource files of the project are displayed in the corresponding

boxes. You can now add, change and remove files from the project. If you

subsequently press the Save button then the whole database is recreated. The

former .dat and .idx files of the project are deleted, the text files now forming

the resources of the project are transformed into the internal format and stored

in a new version of the two data sets.

3.5 Augment Project

A project must be opened before you can issue the Augment Project command.

The pop-up menu you get when clicking Augment Project is similar to the one for

 10

New Project. The boxes Save Project as and Database Directory are predefined.

All other boxes are empty. You can enter any resource file you want to add to

the project.

As opposed to Project Settings, pressing the Save button does not result in a

recreation of the database (the .dat and .idx files). Instead the files specified in

the Augment Project pop-up menu are transformed into internal format and

added to the existing .dat and .idx file. This saves computer time, especially if

you have a very big database. However, the user must be sure that he/she does

not augment the database with any data that has already been included. The

latter would result in double entries which suggest ambiguity.

3.6 Recreate Database

A project must be opened before you can issue the Recreate Database command.

Recreating the Database means that the existing .dat and .idx files are deleted,

that the resource files forming the project are transformed into internal format

and then stored in a new version of the .dat and .idx files.

The database is recreated if you changed the resource files specification by

means of the Project Settings menu and then press the Save button. The

database is also recreated if the program detects a modification of any resource

file when opening a project and you answer "yes" to the following message:

Fig. 5 Prompting the recreation of the database

It is advisable to issue the Recreate Database Command at restart after each

abnormal end of the program, even if the Log message Database is up to date

appears. The database may be corrupt due to the crash cause strange errors.

 11

3.7 Activate Logfile

If the Activate Logfile command is issued, a documentation of all subsequent

processes is written into a log file. This file is stored in the directory C:/Plain/log.

Its name is plain_yyyymmdd-hhmmss.log (y=year, m=month, d=day, h=hour,

m=minute, s=second of the execution time.) The user might consult this file if

the program does not behave as desired and the reason is not clear. The file

could also be sent to the PLAIN service team in order to get help or to indicate a

bug.

4 The Categories menu

The expressions of the DRL consist of complex categories. Each category

comprises a set of attribute and values. See details about the DRL syntax in

"The Linguist's Guide to PLAIN". Any attribute must be defined before it can be

used in a DRL expression. This is necessary because different attributes may be

processed differently. The definition of attributes must be drawn up in the file

that is specified in the Categories Definition box of the New Project menu. The

format of this file is determined in "The Linguist's Guide to PLAIN".

Pressing the Categories button results in the following drop-out menu:

Fig. 6 The Categories drop-out menu

4.1 Show Attributes

Show Attributes displays the set of attributes defined for the current project,

preceded by a code for the attribute type. This command is used, first of all, to

check whether the definition of attributes succeeded and is correct.

 12

4.2 Attribute Filtering

Attribute Filtering is a device to vary the DRL representation. The amount of

attributes processed by the scanner, the parser or the transducer may be large.

By attribute filtering the display can be tuned to just those attributes the user is

interested in.

The Attribute Filtering command results, for example, in the following pop-up

window.

Fig. 7 Attribute Filtering

The two boxes of the window contain the attributes to be visible or to be hidden.

The user has to mark an attribute and then click on the appropriate arrow to

move it from one box to the other. Pressing the On button at the end activates

the choice.

If Attribute Filtering should be abandoned and all attributes should be shown

again then just press the Off button. No attribute filtering is the default as long

as Attribute Filtering has not been invoked.

Note: The sequence of the attributes in a DRL term is the same as the sequence

of their definitions in the Category Definition resource file specified in the New

 13

Project menu. If you want to change the sequence in the display then change

the sequence of these definitions in the resource file and recreate the database.

5 The Lists menu

The formal representation of DUG consists of labeled dependency trees. The

format for input and output of such trees consists of bracketed expressions

containing attributes and values. We call this format "Dependency

Representation Language" (DRL). The bracketed expressions are implemented as

linked lists. That is why we use the term "list" synonymous to dependency tree.

Pressing the Lists button of the main menu bar results in Fig. 8.

Fig. 8 The Lists drop-out menu

5.1 Enter a List

This function is used as a tool for testing lists. Lists can be complex. The linear

specification may contain errors. The Enter a List function checks whether a DRL

input is correct and can be stored as a linked list. The function outputs the list in

pretty print. Compare Fig. 9 and Fig. 10.

Fig. 9 Testing a DRL expression

 14

Fig. 10 The DRL expression in pretty print

5.2 Read and Write Lists

Many PLAIN functions create DRL lists and store them in files. The Read and

Write Lists function allows to read such files in order to inspect the lists or to

copy the lists to new files in various formats.

The Read and Write Lists command yields the following pop-up window.

Fig. 11 The Read and Write Lists window

 15

The lists are read from the file specified in the File box. If Copy to file is

activated then the lists are written into a new file. You will be prompted for the

name and directory of the new file. If Selected attributes is activated then only

those categories are displayed and copied that are visible according to the actual

state of Category Filtering (cf. 4.2): If Line format is activated then the output

is divided in lines with a length of 80 characters. If XML tags is activated then

each list is augmented by the prefix "<instance><drl>" and the postfix

"</drl></instance>\n". If Roles & lexemes only is activated then just the role

attribute and the lexeme and reading attributes are visible. The role attribute

displays the syntactic function of a list element, like "subject, object, predicate"

etc. The lexeme and reading attributes show the lexical meaning of the element.

This list format is most perspicuous. If Pretty print is activated then the list

depicts the tree structure by means of indenting. Each list element is displayed

on a new line and indented according to the bracketing structure.

5.3 Find Lists in the Database

Lists are widely used by the PLAIN modules. That is why an efficient device for

storing and retrieving lists in the database is implemented in PLAIN. Find Lists in

the Database offers these facilities to the user.

The Find Lists in the Database command results in the following pop-up window.

Fig. 12 The Find List window

 16

There a three devices for optimizing the access to tree-like data. First, the

database can be divided into arbitrary partitions. For example, the data of

different languages may be saved in different partitions. The synframes and

templates of the parser certainly form particular partitions as well as the rules

used by the transducer.

Second, one or more indexes are created for each list stored in the database.

Each index consists of an attribute and a value. For example, Attribute "role",

Value "predicate", or Attribute "lexeme", Value "love".

Third, it can be stipulated at which Location in the tree the indexing attribute

and value occur. The following possibilities exist:

- Head: the attribute occurs in the top-most term of the list.

- Ante: the attribute occurs in the antecedent term, i.e. the first child of the

topmost term of the list.

- Post: the attribute occurs in the postcedent term, i.e. the second or any

further child of the topmost term of the list.

- Depend: the attribute occurs in any child of the top-most term (this

includes Ante as well as Post).

Partitions and the types of indexes for each partitions must be defined by the

linguist in a special file. This file must be specified in the Definition File box of the

New Project pop-up menu. The format of this file is described in "The Linguist's

Guide to PLAIN".

In order to retrieve a list or a set of lists enter or choose a partition in the

Partition Box of Fig. 12. Enter an Attribute and a Value or use the asterisk as

wildcard. Choose the Location of the index attribute in the list. Press OK.

Note: Partitioning and Indexing may be defined in such a way that every list is

indexed according to many attributes, values and locations. However, the Find

List function only allows retrieving a list by one Attribute, Value and Location at a

time.

 17

6 The Morphology menu

Pressing the Morphology button of the main menu bar results in Fig. 13.

Fig. 13 The Morphology drop-out menu

6.1 Show Paradigms

The morphological lexicon is divided in so-called Paradigms, e.g. a set of stems

or a set of endings of a particular inflectional class etc. Each paradigm has an id

(a name). See "The Linguist's Guide to PLAIN" for advice to draw up a lexicon of

paradigms.

The command Show Paradigms displays the ids of all paradigms stored in the

database. This function is useful, first of all, for checking whether the definition

of paradigms succeeded and is correct.

6.2 Paradigm Content

You will be prompted for a paradigm name if you issue the Paradigm Content

command. A copy of the specification of the paradigm in question is displayed.

This copy is drawn up from the internal database. It should be identical with the

specification of the paradigm in the external resource file. Hence, the function

serves for assessing the correct contents of the morpho-syntactic resources and

the successful storage in the project's database.

 18

6.3 Lookup

The Lookup function retrieves the morpho-syntactic classification assigned to a

given natural language string by the actual lexicon. The Lookup command

results in the following pop-up window.

Fig. 14 The Lookup window

 The input to be looked up in the lexicon must be entered in the String box of the

pop-up menu. Alternatively the input can be provided by a file which contains a

list of strings or a full text. The file must be specified in the File box of the menu.

There are three options that restrict the information displayed by the Lookup

function. If All is activated then all strings in the input are classified and all

attributes and values are shown. The verbosity of the classification can be tuned

by Category Filtering (cf. 4.2).

If Unknowns only is activated then only those strings in the input are displayed

that are NOT in the lexicon and hence are classified as "unknown". This option is

useful for checking the completeness of the lexicon. If applied to a text corpus,

the result is a list of words that must still be included in the lexicon.

 19

If Duplicates only is activated then only those strings and attributes are

displayed which yield the same classification several times. This can happen

because the subsets of the lexicon in the resource files overlap. Duplicates also

reveal redundancy due to inappropriate assignments. Hence, this option is

useful for checking the conciseness of the lexicon.

6.4 Generate Word Forms from Root

The Generate Word Forms from Root command in the Morphology menu initiates

a function that generates the inflected strings together with their morpho-

syntactic description given a root and a paradigm. The pop-up menu invoked by

the command looks as follows:

Fig. 15 The Generate Word Forms window

The morphological lexicon is technically a Finite Transition Network (FTN). The

most simple case of contents is a set of word stems stored in one paradigm.

Each word stem leads to a particular set of endings stored in other paradigms

that combine with the stem in question. By traversing the FTN via the stem

subnet to the endings subnets all word forms can be derived. This is in fact what

the function Generate Word Forms from Root is doing. For details on a more

sophisticated elaboration of the lexicon see "The Linguist's Guide to PLAIN".

You must specify the paradigm which contains the stem (or root) in the Paradigm

box and you must enter the stem itself in the Root box. If you want to test a

 20

large amount of word forms you might draw up a text file in your editor. Each

line in this file must contain a paradigm id and a root separated by the tab

character.

Note: The usefulness of this function is limited. It generates just those word

forms that are hooked to a particular stem. If you want to check exactly this,

fine. Using this function for generating all forms of a word with changing stems

would mean that you have to enter all the stems. PLAIN offers a far more

comprehensive function of word form generation: Generate Word Forms from

Lexeme. See section 10.1.

6.5 Morphology layers and converters

DUG offers a sophisticated treatment of morphology which is mirrored by several

layers of descriptions. The detailed specification of these descriptions is

presented in "The Linguist's Guide to PLAIN". Tools to turn one layer of

description into another are displayed if you press the Converters button of the

main menu bar (cf. chapter 11).

7 The Parser menu

Pressing the Parser button of the main menu bar results in Fig. 16.

Fig. 16 The Parser drop-out menu

 21

7.1 Parse Manual Input

The Parse Manual Input command is used for testing the parser on-line. The

command invokes the following window:

Fig. 17 Manual input to the parser

Any text to be analyzed may be entered in the input box. The output of the

parser is a DRL list which will appear in the Result Message box of the Main

Window. You find details on the analysis and the necessary resource files in "The

Linguist's Guide to PLAIN".

If First match only is activated then the parser stops after reaching one coherent

and grammatical analysis of the whole input. If you turn off this option then any

possible analysis is tried. This may result in excessive processing time. On the

other hand it is necessary to turn off the option in order to detect existing

ambiguities.

7.2 Parse a file

The Parse a file command yields the following pop-up window:

 22

Fig. 17 Input to parsing from a file

In this case the parser receives its input from the file specified in the File box.

The output of the parser are DRL lists which will appear in the Result Message

box of the Main Window. At present, the unit in the file to be parsed are lines. If

you want to parse sentences you have to separate the sentences by the line feed

character.

There are three options regarding the way each resulting list is displayed. If

more then one option is chosen then more then one result is displayed.

If Short is activated then the result is printed as a tree with each element on a

separate line and indented according to bracketing. Just the role attribute and

the lexeme and reading attributes are visible. The role attribute displays the

syntactic function of the list element, like "subject, object, predicate" etc. The

lexeme and reading attributes show the lexical meaning of the element. This list

format is most perspicuous.

If Long is activated all attributes and values of each list element are displayed. If

you activated Category Filtering (4.2) before then only the visible attributes are

shown.

 23

If Full is activated then all available Information about the resulting list is

displayed, including the corresponding surface string of each list element and its

offsets in the input.

Note: The input file may contain comments which must adhere to the following

format: <test topic="x"/>, where x is any text. The comment is displayed in the

parsing output in front of the examples that followed the comment in the input

file.

If you use the converter Text Examples to Parser Input to turn examples of

templates and synframes into a test file (cf. 11.5) such comments are inserted

automatically.

7.3 Tools

The rest of the commands of the Parser menu in Fig. 16 are tools for the linguist

as a user of the PLAIN IDE. Drawing up a lexicon and a grammar of a language

is a complicated task. It requires extensive testing and debugging. Facilitating

this work is the focus of PLAIN.

Some of the tools require knowledge about certain aspects of the PLAIN

algorithms. Please refer to "The PLAIN Technical Guide".

The following commands require the previous execution of the Parse Manual

Input command. As long as Parse Manual Input command is not issued again any

of the following commands can be used in order to display aspects of the

previous analysis.

7.4 Show Short Result

The parsing result is displayed (again) in pretty print, but in a special format

restricted to role, lexeme and reading attributes. The role attribute displays the

syntactic function of the list element, like "subject, object, predicate" etc. The

lexeme and reading attributes show the lexical meaning of the element. This list

format is most perspicuous.

 24

7.5 Show Long Result

The parsing result is displayed (again) as a DRL list in pretty print, including all

visible attributes and values of each list element. The Category Filtering (4.2)

command may be executed at any time. Subsequently the Show Long Result

command yields only those attributes visible in the Category Filtering box

(Fig. 7).

7.6 Show Full Result

The parsing result is displayed (again). For each list element the corresponding

surface string and its offsets in the input is shown followed by the complete DRL

classifying of this element. The list elements on the same hierarchical level are

sorted according to the sequence of words on the surface.

7.7 Show Rooted Chart Elements

The chart is a central data structure of the parser. Its purpose is to administrate

intermediate results. For details see "The PLAIN Technical Guide". The linguist

can learn from the intermediate results whether the analysis meets the

expectations. Show Rooted Chart Elements displays only those chart elements

that form intermediate results in the course of building the result with the "root"

(i.e. the top-most element of a dependency tree). You will be prompted for the

number of the root element. If you enter "0" you will get the chart elements of

the final result.

7.8 Show All Chart Elements

Show All Chart Elements displays all chart elements in the sequence of their

emergence.

 25

7.9 Show Sorted Chart Elements

Show Sorted Chart Elements displays all chart elements sorted according to the

length of the intermediate result they represent, the longest first.

7.10 Show Bulletin

A bulletin is an object that collects all information about a chart element. Show

Bulletin displays this information. Making use of this information requires the

study of "The PLAIN Technical Guide".

7.11 Show all Bulletins of a Result

This is a combination of Show Rooted Chart Elements and Show Bulletin. All

the bulletins are displayed that form intermediate results in the course of

building the "root" bulletin (i.e. the one containing the top-most element of a

dependency tree). You will be prompted for the chart number of the root

element. If you enter "0" then you will get all intermediate bulletins of the final

result.

7.12 Compare Bulletins

You will be prompted for the number of two chart elements. Compare Bulletins

displays the similarities and differences of the two bulletins corresponding with

the chart elements. This tool is useful if some intermediate results look alike.

Identical intermediate results must be avoided because they lead to a useless

combinatorial expansion.

7.13 Show Diagnosis

You will be prompted for the number of two chart elements. Show Diagnosis

resets the parser to the situation of processing these two elements. The parser

tries anew to combine the corresponding constituents in order to form a new

constituent covering both. This is the basic mechanism of the parser. All

possibilities according to the bulletin data are tried, e.g. interpreting one

 26

constituent as head and the other one as complement, or one as head the other

one as adjunct etc. Failing and succeeding steps are documented by extensive

comments.

This tool is most useful if the linguist is puzzled why the parser does not work as

expected for a particular syntactic construction. It is also helpful to understand

why useless results are created.

8 The Tagger menu

A tagger is a program that usually associates simple part-of-speech symbols with

words, often by means of statistical methods. The lexicon Lookup module of

PLAIN yields much more sophisticated classifications of words with all kinds of

attributes and values. Lemmatization as well as segmentation of compounds is

included. Since categories can be defined and filtered at will by the user, the

classification can focus on particular features including semantic ones Last but

not least, the tagger can invoke the parser module. In this case tags are more

reliable because they are disambiguated by the syntactic context. In addition

syntactic role tags are created which should be more useful than parts-of-

speech tags. Category Filtering (4.2) may be applied previous to invoking the

tagger and thus provide a large variance of tag sets.

Some users may be interested in these capabilities, although this is only a by-

product of a comprehensive description of languages which is the main focus of

PLAIN.

Pressing the Tagger button of the main menu bar results in Fig. 18.

Fig.18 The Tagger drop-out menu

 27

8.1 Lexical Lookup Only

In this case the tagging task is performed by the lexicon Lookup module alone.

The device is the same as the Lookup command in the Morphology menu. If you

issue the Lexical Lookup Only command you will be prompted for an input file

which contains the text to be tagged.

An output xml-file is created containing the words (more precisely: the lexical

segments) of the input, each one on a separate line and surrounded by <char>

and </char>. The <char> element is augmented by an attribute named "offset".

Its value is the offset of the word from the beginning of the input text. The

<char> element has another attribute named "length". Its value is the length of

the word. A number of classifications in DRL notation follow, each one on a

separate line and surrounded by <drl> and </drl>. The <drl> element is

augmented by an attribute named "valid". Its value is "1" if the classification is

ambiguous, its value is "4" if a unique classification has been found.

If the check box First match only is activated then only the first <char> <drl>

pair of alternative classifications is displayed, i.e. for any segment there is just

one classification.

Note: You can reduce ambiguity and hence alternative classifications by moving

attributes from the visible to the hidden part with the command Attribute

filtering in the menu Categories.

8.2 Parse the Input

In this case full or partial parsing is employed in order to create reliable or more

perspicuous tags. If you issue the Parse the Input command you will be

prompted for an input file which contains the text to be tagged.

An output xml-file is created containing the sentences of the input file

surrounded by <instance> and </instance>. At present, each character string

followed by a line feed character is treated as sentence.

 28

Within the <instance> element a number of pairs follow. Each pair is formed by

a word (more precisely: a lexical segment) of the input on a separate line and

surrounded by <char> and </char> and a classifications in DRL notation on a

separate line and surrounded by <drl> and </drl>. The <char> element is

augmented by an attribute named "offset". Its value is the offset of the word

from the beginning of the sentence (i.e. the string covered by the <instance>

tags). The <char> element has another attribute named "length". Its value is

the length of the word.

Note: In the case of Lexical lookup only "offset" is calculated from the

beginning of the input file. In the case of Parse the Input "offset" is calculated

within each <instance> element.

The <drl> element is augmented by an attribute named "valid". Its value is "2"

if the classification is based on partial parsing because no complete syntactic

analysis of the input has been achieved. The value is "3" if the parser yielded

more than one complete syntactic analysis, i.e. the sentence is ambiguous and

hence the words classification not completely safe. The value is "4" if the tagging

is based on just one complete parser result.

The words in the output are displayed in the same order as in the input. Three

additional attributes of the <drl> tag allow to reconstruct the syntactic structure:

"root", "son" and "brother". The attribute 'root="yes"' marks the head of the

dependency tree representing the sentence. The value of the attribute "son" is

the "offset" attribute of the first element that is dependent of the element in

question. The value of the attribute "brother" is the "offset" attribute of another

element that is dependent of the same head as the element in question.

9 The Transducer menu

The transducer creates new DRL representations (e.g. a translation into another

language) on the basis of old ones. The transformation is guided by rules. For

more details see "The Linguist's Guide to PLAIN".

 29

Pressing the Transducer button of the main menu bar results in Fig. 19.

Fig. 19 The Transducer drop-out menu

9.1 Apply Rule to List

The command Apply Rule to List causes the following window to appear:

Fig. 20 The Apply Rule to List window

The purpose of the Apply Rule to List function is testing and debugging

individual transducer rules. Any DRL list may function as an instance. A rule

consists of two parts: a pattern describing the applicable instances, and a pattern

of the result to be created.

 30

First we have to get the instance that is to be the subject of a rule application. If

manual input is activated then an entry box pops up. A DRL expression

representing the instance has to be entered in this box.

If getting the instance from a file is activated then an entry box pops up. A file

containing the instance must be specified in this box.

If getting the instance from the database is activated then a pop-up menu

appears identical to the Find List menu in Fig. 12. In order to retrieve the

instance list choose a partition in the Partition Box., enter an Attribute and a

Value or use the asterisk as wildcard. Choose the Location of the index attribute

in the list. Press OK. The first instance meeting the criteria is shown and the

following window pops up:

Fig. 21 Choose an instance or continue

If you want to use the displayed instance then press OK. If you rather want to

retrieve the next instance meeting the criteria then enter Next.

If instances are to be retrieved then they must have been stored in the database

before. The corresponding file or files must have been made official parts of the

actual project. This is achieved by specifying the instance files in the Instances

and Rules box of the NewProject menu, the Project Settings menu or the

Augment Project menu. The Partitioning and Indexing method for these files

must be included in the file specified in the Definition File box.

If getting the instance from the parser is activated then the latest parsing result

is made the instance. Of course, the parser must have been invoked previously.

Second we have to get a rule. If manual input is activated then an entry box

pops up. A DRL expression representing the rule has to be entered in this box.

 31

If getting the rule from a file is activated then an entry box pops up. A file

containing the rule must be specified in this box.

If getting the rule from the database is activated then a pop-up menu appears

identical the Find List menu in Fig. 12. In order to retrieve the rule choose a

partition in the Partition Box., enter an Attribute and a Value or use the asterisk

as wildcard. Choose the Location of the index attribute in the list. Press OK. A

window pops up like in Fig. 21 so that you can choose the current rule or to

retrieve another one.

If rules are to be retrieved then they must have been stored in the database

before. The corresponding file or files must have been made official parts of the

actual project. This is achieved by specifying the rule files in the Instances and

Rules box of the NewProject menu, the Project Settings menu or the Augment

Project menu. The Partitioning and Indexing method for these files must be

included in the file specified in the Definition File box.

If large test batteries are to be run it is convenient to associate pairs of instance

and rule in the same file. For this alternative you have to activate Get both the

instances and rules from a single file. You will be prompted for the file name.

If replacement rules are symmetrical then they can be applied in both directions.

For example the same rule can be used for and English-to-German translation

and a German-to-English translation. Activate the option Apply rule in reverse

order if desired.

As opposed to the command Replace List below, Apply Rule to List applies a

single rule to a single instance.

9.2 Replace List

This function repeatedly applies rules to all parts of an instance, changing the

instance until no further replacement is possible. The command Replace List

causes the following window to appear:

 32

Fig. 22 The Replace List window

First, we need lists to be replaced. One can enter a DRL list manually in the

String box or specify a file containing a collection of DRL lists in the File box.

Second, we need to specify a rule set, e.g. all the rules necessary to translate

the instance into another language. The rules to be used must be part of the

database and they must have been declared in the Instances and Rules box of

the project. Rules must be stored in a particular partition. The appropriate

partition must be chosen in the Partition scroll box of Fig.22.

The algorithm of Replace Lists proceeds from the smallest to the largest sublists

in the instance. The smallest sublists are the leaves in the dependency tree. If a

replacement is possible then a new list is formed in which the corresponding

substitution has taken place. The process starts over again, looking up the leaves

in the new tree first. If no replacement is possible, the next higher sublist is

tried. In this way replacement proceeds bottom-up until no further substitution

is possible.

The efficiency of the replacement function depends on a constrained search of

rules. The principle of lexicalized rules agrees with the lexicalized approach of

 33

the dependency grammar. Therefore it is recommended to draw up replacement

rules for lexemes and specify the lexeme attribute in the Search Attribute box.

Activating the Reverse Order check box has the effect that the rules are applied

from right to left while the normal direction is from left to right.

Activating Show intermediate results displays each rule that is used and each

state of replacement.

10 Generator

The generator is the reverse process of the parser. While the parser turns strings

into DRL representations, the generator turns DRL representations into natural

language surface strings. The generator uses exactly the same resources as the

parser, i.e. the morphosyntactic lexicon, the set of synframes and templates.

Of course other processes may intervene between parser and generator. For

example, the parser creates a dependency tree, the transducer transfers this

tree into a DRL representation of another language, and the generator creates

the string that corresponds to the latter tree. Or the parser analyzes a full text,

the tranducer derives a summary, the generator outputs the text of the

summary.

Pressing the Generator button of the main menu bar results in Fig. 23.

Fig. 23 The Generators menu

10.1 Generate Word Forms from Lexeme

This is the morpho-syntactic subtask of generation. Any word form categorized

by a particular lexeme is created together with its attributes. The command

Generate Word Forms from Lexeme causes the following window to appear:

 34

Fig. 24 The Generate from Lexeme window

The lexeme in question has to be entered in the Lexeme box. Alternatively one

can draw up a file with a list of lexemes (each on a separate line). If you have a

complete list of lexemes of your implementation then you can derive a word

forms lexicon with this function, i.e. the set of all existing word forms together

with their categorization.

Word forms may include derivations, e.g. the noun lover or the adjective loving

from the verb love. If you want to restrict the generation to a particular part of

speech, e.g. just the nouns derived from the verbal lexeme then enter the

desired category in the Select part of speech box.

Remember that the morphological lexicon is technically a Finite Transition

Network (FTN). If the lexicon is structured by complex transitions between

paradigms it might be difficult to check the correctness and debug errors. If the

check box Show traversed paradigms is activated then the transitions that lead

to the particular word form are displayed.

10.2 Generate Natural Language from DRL

This function is the full fletched PLAIN generator based on the available

morphological and syntactic description. If the output of the parser is passed as

input to the generator than the output of the generator should be the original

 35

input of the parser. (If it is not then the resources are insufficient. They do not

define, in a formal sense, exactly the grammatical strings of the language.)

The command Generate Natural Language from DRL causes the following

window to appear:

Fig. 25 The Generate Natural Language from DRL menu

A DRL expression can be entered in the String box. Usually such expressions are

created by other functions and saved in a file. In this case the file must be

specified in the File box. The DRL expression must consist of a dependency tree

that is a valid analysis of a natural language string according to the associated

lexicon, synframes and templates. The tree may represent a sentence or any

substring of a sentence including a single word. (In the latter case the tree

consists of a single term.) As compared to the parsing output the DRL input to

the generator may be underspecified though.

The minimum information each term must comprise is a role attribute and a

lexeme attribute. Syntagmatic roles and lexemes are considered to be the basic

knowledge representation of the DUG. The generator augments these

underspecified expressions with the compatible attributes from the grammatical

resources.

 36

The output of the function can be limited to the generated strings only, or it can

include strings and trees. In the latter case the trees are shown which have been

augmented with the unified attributes which the generator retrieved from

templates and synframes.

You may save the output by activating the copy to file box.

11 Converters

The Converters menu gathers a few tools for handling variations of input files.

Fig. 26 The Converters menu

11.1 SGML to XML

In the course of developing PLAIN some legacy data has been drawn up

according to the DTD "plain-sgml.dtd". At present the program accepts only data

according to the DTD "plain-xml.dtd". A wizard leads you through the conversion

from sgml-files into xml-files. The osx utility is used for this purpose.

11.2 CardlForms to MorphUnits

The resources for the morphological lexicon are organized in three "layers".

There are reasons for different layers from a theoretical point of view. The

theoretical background and the syntax of the necessary files are explained

comprehensively in "The Linguist's Guide to PLAIN".

Cardinal forms (CarldForms) are an easy way of drawing up morphological

classifications. The morphological units (Morphunits) provide an explicit

 37

classification of lexical items. They have been introduced mainly as an interface

for data sharing with the world outside of PLAIN and the DUG. Patterns of

cardinal forms (CardlPats) describe the possible cardinal forms and associate

each matching form with a morphological class.

The following pop-up window initializes the converter CardlForms to MorphUnits:

Fig. 27 CardlForms to MophUnits Converter

A file with cardinal forms must be entered in the CardlForms box. A file with

patterns for these cardinal forms must be entered in the CardlPats box. The full

path and name of a file must be entered which is to receive the output of

MorphUnits.

11.3 MorphUnits to Paradigms

So-called Paradigms form the immediate input layer of PLAIN. They can be

loaded into the database. Technically they are subnets of a finite state transition

network In order to convert MorphUnits into Paradigms, the converter must

resolve the morphological classes that are specified in the morphological units. A

set of paradigms corresponds to each class. This description of classes

(MorphClasses) must be drawn up in a separate file.

The following pop-up window initializes the converter MorphUnits to Paradigms:

 38

Fig. 28 MorphUnits to Paradigms converter

A file with morphological units must be entered in the MorphUnits box. A file

with descriptions of morphological classes must be entered in the MorphClasses

box. The full path and name of a file must be entered that is to receive the

output of Paradigms.

11.4 CardlForms to Paradigms

If the layer of morphological units (MorphUnits) is not needed then one can

create directly Paradigms from CardlForms.

The following pop-up window initializes the converter CardlForms to Paradigms:

Fig. 29 CardlForms to Paradigms converter

 39

A file with cardinal forms must be entered in the CardlForms box. A file with

patterns for these cardinal forms must be entered in the CardlPats box. A file

with descriptions of morphological classes must be entered in the MorphClasses

box. The full path and name of a file must be entered that is to receive the

output of Paradigms.

11.5 Test Examples to Parser Input

This is a facility to relate writing and testing resources. While writing the

grammar it is possible to add test examples to any synframe and to any

template. You have to use a test tag for this purpose. It has the following

format:

<test topic="x">y</test>

x and y is any text. x is supposed to indicate the grammatical phenomenon in

question, and y is an example. The converter creates a test file containing the

examples y.

For example, a template for a dative complement in the german_demo project

might be associated with the following test tags:

<test topic="+dativ"> Der Mann /gibt/ (dem Kind) das Buch.</test>

<test topic="+dativ"> Der Mann /gibt/ das Buch (dem Kind).</test>

The test tag includes an indication of the grammatical phenomenon covered by

the template (topic="+dativ") The test example itself is structured in the

following way:

- in brackets = the segment corresponding to the filler of the template,

- between slashes = the segment corresponding to the head of the

template,

- anything else = context not covered by the template (described

somewhere else).

-

The resource file with test examples must be specified in the pop-up window:

 40

Fig. 30 Deriving test examples from the templates resource file.

You will be asked to specify an output file. The test examples are going to be

stored in this file in a format that can be processed by the parser. Slashes and

brackets are removed. The topic-tag is separated from the parser input. The

example above results in the following lines:

<test topic="+dativ">

Der Mann gibt dem Kind das Buch.

</test>

<test topic="+dativ">

Der Mann gibt das Buch dem Kind.

</test>

This output serves as input for the parser. It can be processed with the Parse a

file command (7.2). A nice feature is the fact that the topic tag is saved and

printed out with the parsing result. Drawing up constructions and testing them

can be organized in this way.

